The Geographically Weighted Multivariate Poisson Inverse Gaussian Regression Model and Its Applications

نویسندگان

چکیده

This study aims to develop a method for multivariate spatial overdispersion count data with mixed Poisson distribution, namely the Geographically Weighted Multivariate Inverse Gaussian Regression (GWMPIGR) model. The parameters of GWMPIGR model are estimated locally using maximum likelihood estimation (MLE) by considering effects. Therefore, significance regression parameter differs each location. In this study, four models evaluated based on exposure variable and weighting function. We compare performance those in real-world application number infant, under-5 maternal deaths East Java 2019 five predictor variables. uses one three Compared fixed kernel function, bisquare function has better fit AICc value. Furthermore, according best model, there several regional groups formed predictors that significantly affected event 2019.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression Analysis under Inverse Gaussian Model: Repeated Observation Case

 Traditional regression analyses assume normality of observations and independence of mean and variance. However, there are many examples in science and Technology where the observations come from a skewed distribution and moreover there is a functional dependence between variance and mean. In this article, we propose a method for regression analysis under Inverse Gaussian model when th...

متن کامل

Geographically weighted Poisson regression for disease association mapping.

This paper describes geographically weighted Poisson regression (GWPR) and its semi-parametric variant as a new statistical tool for analysing disease maps arising from spatially non-stationary processes. The method is a type of conditional kernel regression which uses a spatial weighting function to estimate spatial variations in Poisson regression parameters. It enables us to draw surfaces of...

متن کامل

promotion time cure model with generalized poisson-inverse gaussian distribution

background & aim: in the survival data with long-term survivors the event has not occurred for all the patients despite long-term follow-up, so the survival time for a certain percent is censored at the  end  of the  study.  mixture  cure  model  was  introduced  by boag,  1949  for  reaching  a  more efficient analysis of this set of data. because of some disadvantages of this model non-mixtur...

متن کامل

C.5 Geographically Weighted Regression

Geographically weighted regression (GWR) was introduced to the geography literature by Brunsdon et al. (1996) to study the potential for relationships in a regression model to vary in geographical space, or what is termed parametric nonstationarity. GWR is based on the non-parametric technique of locally weighted regression developed in statistics for curve-fitting and smoothing applications, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app12094199